
Energy theorems in constrained density-functional theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 1971

(http://iopscience.iop.org/0953-8984/1/11/004)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 10/05/2010 at 17:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/11
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter l(1989) 1971-1981. Printed in the UK 

Energy theorems in Constrained density-functional theory 

Swapan K Ghosht and Vijay A Singh$ 
t Heavy Water Division, Bhabha Atomic Research Centre, Bombay 400 085, India 
$ Department of Physics, Indian Institute of Technology, Kanpur 208 016, India 

Received 7 April 1988 

Abstract. The virial theorem is derived within a density-functional framework for enclosed 
many-electron systems subjected to external constraints. The scaling relations for the density 
and the energy density functionals for enclosed systems are defined, and a scheme for 
enforcing the virial theorem on the solution of a constrained density-functional calculation 
is proposed. The Hellmann-Feynman theor-m for this case is also discussed. 

1. Introduction 

The virial and the Hellmann-Feynman theorems are regarded as two of the most 
powerful quantum-mechanical theorems applicable to molecules and solids. For 
reviews, see for example Marc and McMillan (1985) and Deb (1973). Although these 
two energy theorems were originally derived using the wavefunction theory, in recent 
years they have been reinvestigated within the framework of density-functional theory 
(DFT) (Hohenberg and Kohn 1964, Kohn and Sham 1965). The latter provides an 
alternative description of electronic structure using the single-particle density (March 
and Deb 1987) as the basic variable instead of the many-particle wavefunction and has 
thus established itself as a conceptually simple and practically useful tool in several 
branches of physics (Dreizler and Providencia 1985) and chemistry (Parr 1983). Further 
interesting problems connected with charge and magnetisation fluctuations in solids 
(Dederichs et a1 1984) have also recently been encompassed by a density-functional 
approach compatible with arbitrary constraints imposed on the density (Dederichs et a1 
1984, Westhaus 1983). In the conventional DFT, the Hellmann-Feynman and virial 
theorems (Averill and Painter 1981, Ghosh and Parr 1985, Levy and Perdew 1985) have 
been shown to retain their usual forms while the present work aims at investigating the 
nature and scope of these two theorems in the context of DFT for constrained systems. 

The constrained density-functional formalism discussed by Dederichs et a1 (1984) 
has an important bearing on the recently proposed bistability model for cerium impurities 
by Schluter and Varma (1982,1983) and its subsequent discussion by Bringer (1983). In 
constrained DFT, one might have the physical constraint imposing the density to be 
restricted to a certain volume or region and integrated to a certain value; also, the 
expectation value of a certain suitable operator might be constrained to possess a 
particular value. Since the solution of a density-functional scheme for a constrained case 
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differs from that of the unconstrained one, important differences are likely to appear in 
the energy theorems as well. 

In wavefunction theory, the virial theorem (VT) can be derived, following Slater 
(1933), through manipulations of the Schrodinger equation with the virial operator 
directly. The alternative route follows the scaling procedure of Fock (1930) and the 
variational property of the energy (Lowdin 1959). In DFT too, one arrives at the wei ther  
by explicit consideration (Slater 1972) of the Kohn-Sham (KS) type single-particle 
equation (Kohn and Sham 1965) or using the scaling property (Szasz et aZ1975) of the 
energy density functionals. The density-functional version of the VT also follows in a 
general manner (Ghosh and Parr 1985) from the scaling properties of the energy density 
functionals and the Euler equation without recourse to any explicit forms of the func- 
tionals. The last method of derivation has the advantage over the variational method 
when approximate functionals are used since, for such cases, the minimum property of 
the functional is not guaranteed. The Euler equation has, however, been proved to 
be rigorously valid (Langreth 1984) without using the variational property, even for 
approximate functionals. 

For enclosed systems, i.e. for finite volume constraint, in wavefunction theory, the 
VT has been derived using the Schrodinger equation approach by Cottrell and Paterson 
(1951). The scaling approach in this connection has however received rather little 
attention (Fernandez and Castro 1982). For enclosed systems, in DFT too, the VT has 
been employed to obtain expressions for pressure (Liberman 1971, Janak 1974, Heine 
1980, Godwal et aZl983). General derivations of VT using DFT for constrained systems 
have, however, not been studied. In what follows, we present in § 2 a density-functional 
derivation of VT when the net density p(r)  or an orbital density (e.g. the f-orbital density 
pf(r)) is constrained. The derivations are based on (i) the KS equation, (ii) the scaling 
property of the energy functionals and the variational principle, and (iii) the scaling 
property and the Euler equation. Section 3 discusses the Hellmann-Feynman theorem 
in the presence of constraints. The effect of other constraints on the VT is discussed and 
an optimum scale parameter is obtained in § 4 to enforce the VT in such cases. Finally 
we offer a few concluding remarks in § 5 and discuss the scaling relations of the density 
functionals corresponding to an enclosed system in the Appendix. 

2. Density-functional theory and the virial theorem for constrained systems 

The density-functional description of a many-electron system characterised by an exter- 
nal potential U(.) is concerned with the energy expressed as a unique functional of the 
electron density p ( r ) ,  i.e. 

E [ ~ I  = T [ ~ I  + J” u(r>p(r> dr  + + ~ x c ~ p ~  + v n n  (1) 

where T[p ]  is the kinetic energy (KE), J[p]  the classical Coulomb energy given by 

J[p] = 4 J d r d r ’  p(r)p(r’) / lr  - r’/ 

U,&] the exchange-correlation (xc) energy functionals and Vn, is the nuclear repulsion 
contribution. (Atomic units are used throughout.) 
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The simplest constraint imposed on density is that its integral within a volume V (e.g. 
a sphere of radius a )  equals N ,  the number of electrons. This corresponds to the 
minimisation of the functional 

resulting in the Euler equation 

S E / S p  - p = 0 (3) 
which can be solved for the density and hence the energy. Alternatively, one can solve 
the KS equations, viz. 

[-+V2 + veff(r)]qj = E j V i  

ueff(r)  = u(r) + dr’ p(r’)/lr - r’I + SE,,/Sp 

(4a)  

(4b) I 
which are obtained from equations (1) and (3) by replacing T [ p ]  by T,[p],  the latter 
being the KE of a system of non-interacting particles of density p ( r ) ,  and incorporating 
the contribution ( T  - Ts) into the xc term, i.e. E,, = U,, + ( T  - T,). 

The constraint might also restrict the f-orbital density alone of a rare-earth metal, 
viz. 

here N f  is the number of f electrons within the volume V. The VT within the density- 
functional framework can now be derived in three alternative ways. 

2.1. Kohn-Sham equation and the virial theorem 

To derive the VT from the KS equation (4),  we pre-multiply the latter by q: and operate 
with r V to obtain 

( r . V q , * ) ( - W  + V , f f ) V j  + q , T [ r . V ( - W  + v e f f ) ] q i  + q T v e f f ( r . V q j )  

= (re V q : ) & j q j  + q? &i(r’ V)q, i .  (6) 
Making use of the complex conjugate of equation (4) into the third term of equation (6), 
one obtains 

-&I: (r  * V ) V 2 q ;  + q; ( r  * V V e f f ) q ; )  + i (r  ’ V q j ) V * q ;  = 0. (7) 

(8) 

Using the identity 

-[I&; ( r .  V ) V 2 q J  + (r vqj)v2qT = 2 3 p q ;  - v . [ q ; * v ( r .  vqi/qT)] 
in equation (7) and integrating one obtains 

Now, the last term within the brackets can be rewritten as 

[ q r 2 V ( r  * V q j / q T ) ]  = q ? V ( r .  V q l )  - ( r .  V I / J ; ) V ~ :  (10) 
of which the first term on the RHS vanishes at the surface; thus, the only contribution of 
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the surface integral term in equation (9) comes from the last term of equation (lo),  
leading to 

p i ( r  * Vueff) d r  + 4 d s  ( r  . V q i ) V q T  = 0. 

Following Cottrell and Paterson (1951) and McLellan (1974), we now use the dimen- 
sionless scaledcoordinates, viz. r = am, i.e. ( x ,  y ,  z )  = ( a w l ,  aw2, aw3),  and the bound- 
ary condition for vi to obtain the result 

Now, multiplying the KS equation (4) by (a q i / d a )  and its derivative with respect to a by 
and using the complex conjugate of the KS equation, we obtain 

(13) 
( d & , / d a )  = -a [ q T V 2 ( ( a q i / a a )  - ( d q i / a a ) V 2 ~ , T ]  dr  + 1 qT((aueff/da)qi d r  i 
which, on using the Green theorem and the boundary condition, simplifies to 

Replacing the surface integral of equation (11) using equations (12) and (14), one obtains 

2[-4 I#;" V 2 q i  dr] - p i ( r .  Vueff) d r  + a(dsi /aa> i i 

Summation over the orbitals leads to 

Now, in KS theory, the energy E is given by 
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where the boundary condition that the density and the potential energy density vanish 
at the boundary r = a has been used. Using equation (18), equation (16) becomes 

2T, - lo' p(r) (r .  Vueff) d r  + a(dE/aa) = 0 (19) 

which gives thz virial theorem 

2T, + 2(T - T,) + V + a(aE/aa) = 0 (20a) 

i.e. 

2T + V + a(dE/aa) = 0 (20b) 

where V is the potential energy given by u p ]  = E[p]  - T [ p ] .  This follows from the 
scaling properties of the density functionals (Szasz et a1 1975) and the derivation of 
Ghosh and Parr (1985). 

When additional constraints are imposed (e.g. the second moment of the f-orbital 
density at the impurity site), i.e. 

is added to the energy functional, leading to a parabolic potential y(r2  - (r2)f) in the KS 
equation for the f orbital, an extra contribution will arise from the second term of 
equation (19), resulting in 

2T, - loa p(r) ( r  . Vueff) d r  - 2y(r2)f + a(aE/da)  = 0 

i.e. 

2T + V - 2y(r2), + a(dE/da)  = 0 (22b) 

instead of the conventional form of the virial theorem given by equation (20). It may be 
noted here that if the density and the energy components are calculated through the 
Kohn-Sham scheme, it is easier to use equations (19) and (22a) since T, and ueff are 
directly obtained during the calculation. Although equations (20) and (22b) represent 
compact forms, it is difficult to obtain T [ p ]  and V[p]  in a KS calculation. 

2.2. Virial theorem from the Euler equation for density 

While the Kohn-Sham scheme is the most widely used one in DR, the more general 
equation for density is the Euler equation (3) rewritten as 

ST/Sp + SV/Sp = p. (23) 

It is now of interest to obtain the virial theorem from this equation, irrespective of any 
specific forms of the energy functionals, using only the scaling properties of the kinetic 
and potential energy functionals. 
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For a functional F[p ]  with the scaling property (see Appendix for the definition of 
scaling for constrained systems, equation (A4)) 

one can easily show, following the derivation of Ghosh and Parr (1985) (see the Appendix 
of this paper), that 

F ,  = q p , ,  d e l  = C k F [ P ,  a1 (24) 

Using equation (As) of the Appendix, equation (25) becomes 

jOU P W  [r * V ( W W l  d r  

= -(dFg/dC)Is=1 - (a/f)(aFS./aa)lr=I + U J U  d~(WQP)(aP /ab ) l ,= ,  
0 

= - k F -  a(aF/aa)  + U  dr(dF/dp)(Sp/Sa). (26) loa 
Now, the scaled functionals (equations (A4) and (24)) for the kinetic and potential 

energy components (Szasz et a1 1975, Levy et a1 1985) become 

Tg = Tg[P,, 4 1  = C2T[P. a1 
v, = V;[Pg, 4 1  = CVb,  al. 

(27a) 

(27b) 
Operating the Euler equation (23) with the virial operator (r V), integrating after 
multiplication with p(r)  and using equations (26) and (27), one obtains the result: 

2T + V + a(aE/da)  - U d r  [(6T/Sp) + (SV/Sp)](dp/da) = 0. (28) l 
The last term of equation (28) vanishes on account of the Euler equation (23) resulting 
in the VT (20). In the presence of the constraint (21), the additional term of equation 
(22) appears. 

2.3. Virial theorem, the scaling procedure and the energy minimisation 

The scaled energy E,  can be written, using equation (27), as 

which gives 

Now considering the scaled energy as E,[b, pg(b(e, a) ,  e)], equation (A8) gives 

Assuming the energy to be minimum, i.e. the condition 

E ,  = f2T[Pl + CVPl 

(dE,/dC) = 2 5 " l  + VPl .  

(dEgldC) = ( a E < / d f ) b  - ( a / e ) ( a E , / a a ) S *  

(29) 

(30) 

(31) 

(32) 
b 

(aEg/ae)b  = I dr[(aPg/aC)a + (a/f>(ap,/aa>,l(dE,/Sp,)b = 
0 

and using equations (30) and (31), one obtains 
2CT[p] + V[p] + f a (aTJaa)  + a(av/au) = 0. (33) 

If the minimum corresponds to the value f = 1, one has the virial theorem (20). 
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Although the two earlier derivations require the density to satisfy the KS or Euler 
equations exactly, the variational derivation shows that even an approximate density 
would satisfy the VT if optimised with respect to scaling during the energy minimisation. 

The optimum scale factor corresponds to the minimum of the scaled energy and is 
obtained from equation (33) as 

r;, = -{V[pl + a(av/aa)>/{2l.[pl + a(aT/aa)>. (34) 
That the corresponding scaled density pCo(r ;  b o )  where bo = a/co will satisfy the 

virial theorem, although p( r )  does not, can easily be proved. Thus, differentiation of 
equation (29) at constant gives 

(aE,/aa) = r ;2(aT[Pl /w + r;(av[pl/aa). 
Now multiplying equation (33) with (= CO), one has 

(35) 

25;2,T[p] + r;oT/[pl + r;2,a(aT/aa) + r ; o a ( W W  = 0 (36) 
which can be rewritten, using equation (35) for ( = to, as 

proving the VT for scaled energy components. 
Insolids, it isoftenveryimportant toensure that thedensitysatisfies t h e v ~  (especially 

in connection with the calculation of pressure, etc.) and equation (34) would be useful. 

3. Hellmann-Feynman theorem for constrained systems 

The Hellmann-Feynman (HF) theorem, in wavefunction theory, expresses the energy 
derivative as 

@ E l W  = (wl(aH/aA)lw> (38) 
where A is a parameter characterising the Hamiltonian H. If A appears only in the single- 
particle potential u(r), equation (38) simplifies to 

(aE/eA) = J drp(r)[av(r)/dA]. (39) 

J%l = 1 drp(r)u(r)  + F[Pl 

In DFT, equation (39) follows directly from the energy functional 

(40) 

and the Euler equation (see also equations (3) and (23)) 

SE/Sp = u(r) + SF/Sp = p. (41) 
Differentiating equation (40) with respect to A ,  and using equation (41), one obtains 
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The HF theorem for constrained systems (Epstein 1974, 1980) can also be easily 
obtained through the KS equation. The energy functional corresponding to the KS 
equation (4) is given by equation (17), which on differentiation yields 

(aE/aA) = 2 ( a E i / a A )  - d r  ueff[ap(r)/aAI - J" d rp ( r )  [aueff /aAI 
i i 

Therefore, the HF theorem for the constrained DFT is 

(aE/aA) = 1" drp(r)(au/aA) - 42 I d s  [ v T V ( d V i / d A )  - (dVi/dA)VvT]. (46) 

The surface integral, however, vanishes for the boundary condition v i ( a )  = 0 and 
therefore equation (46) reduces to equation (39). For periodic boundary conditions with 
v i ( a )  # 0, this term might contribute in general. 

If the parameter A is (r2)f corresponding to the constraint (21), the corresponding HF 
theorem (39) gives 

0 i s  

(aE/d(r2)f) = Y. (47) 

The HF theorem is obeyed by the exact solution of the KS equation or the Euler 
equation for density but it can also be satisfied by suitable variational solutions. Now if 
p(r) is such a variationally obtained density satisfying the HF theorem but not the VT, a 
proper scaled density pc(r) with a scale factor 5 (=to) of equation (34) would satisfy the 
VT. It is however to be seen how far the HF theorem would be applicable with this scaled 
density. 

4. Discussion 

The analysis of the scaling procedure discussed in 0 2 can be directly employed in the 
constrained density-functional calculations. When a constraint of the form (21) is used, 
the resulting density satisfies equation (22) instead of the actual VT (20). However, the 
density pf(r) obtained through the constraint (21) can be forced to satisfy the VT of 
equation (20) by scaling with the scale factor of equation (34). 
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In order to ensure that the new scaled density pf(t,  r )  is the solution of interest, the 
constraint should be imposed on the scaled density (see Parr and Ghosh (1986) for an 
analogous algorithm used for improving the Thomas-Fermi theory), i.e. equation (21) 
should be replaced by 

Y @) i,’ r 2 m  dr  - ( r 2 h  I,’ pf(r> dr) (48) 

with 5 (=to) of equation (34). 
Thus the modified KS scheme can be implemented as follows. First, using a trial 

density or potential, the KS equation is solved with a trial value of the Lagrange parameter 
y ,  the scale factor is determined from equation (34) and equation (48) is checked. If not 
obeyed, the calculation is repeated with other values of y until the expression of equation 
(48) vanishes. The scaled f-orbital density is now obtained using the scale factor and 
equation (Al). The calculations are repeated until the self-consistency in density is 
reached. Clearly, the constraint (21) is satisfied by the scaled f-orbital density and, using 
the scale factor, the scaled energy can be obtained using, for example, equation (29). 
Also the VT is automatically satisfied. 

Thus the energy can be calculated for a desired value of ( T ’ ) ~ .  It is however simpler 
to obtain the energy as a function of the (r2)f values. For the trial y the self-consistent 
density is first obtained and the scaled f-orbital density as well as the scaled energy are 
then calculated. The value of (r2)f to which this particular y and the energy corresponds 
is obtained by equating equation (48) to zero. Repeated calculations with varying values 
of y provide the energy as a function of ( Y ~ ) ~ .  

5. Concluding remarks 

The VT has been derived here within a density-functional framework for enclosed systems 
as well as for cases where only the f-orbital density is restricted. The effect of other 
constraints in a density-functional calculation has been discussed with regard to the VT. 
The scaling relations for the density and the energy density functionals in enclosed 
systems are defined and employed for obtaining the VT. While the derivation from the 
KS equation is straightforward, the scaling approach provides several interesting new 
relationships. This does not seem to have been pointed out earlier even in connection 
with wavefunction theory. The scaling procedure is shown to be especially useful in 
providing a means for imposing the VT on a density which otherwise does not obey it. 

The discussion presented here is of importance in connection with the bistability 
model of Schluter and Varma (1982,1983) who had chosen hydrogenic trial densities in 
the calculation. This corresponds to using the constraint that the expectation value (r2)f 
evaluated with the f-orbital density yields the desired value. The HF theorem for systems 
subjected to constraints is important in the work of Dederichs et al(l984). Although not 
discussed here, other constraints like magnetisation, etc., would be of interest and can 
be handled in an analogous manner. 
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Appendix. Scaling relations of density functionals for enclosed systems 

In this appendix, we define the scaling procedure for an enclosed system (e.g. within a 
sphere of radius a). Let the density p(r) be scaled by a scale factor f to yield the scaled 
density pe(r), i.e. 

Pd') = f3p( f r ) .  
The normalisation and the boundary conditions of the original density given by 

10' drp( r )  = N and p(r) = 0  for ~ 2 a  

are preserved by the scaled density as 

lob drpc(r)  = N and P&) = 0 for r 2  b 

where b = a / f .  
The scaling of an energy functional F [ p ]  is now defined as 

Fbl = la  drf(r7 P W  
0 

b 

F ,  E Fc[f ,  a1 E Fg[Pt, b1 = 

Clearly, for the scaled functional, one has the derivative 

dr f ( r7  Pc(r)). 
0 

r b  

Now, one can easily write for a spherically symmetric system 

(aF,/ab),, = 4Jt.b2f(b, P t ( b ) ) .  

Alternatively, one can consider F,  as Fc[pe(r, b ) ,  b]  and write 
r b  

Using equation (A7), equation (A5) becomes 

'0 

+ I b  d r  (ap[/ab) ( S F c / 6 p S ) b *  
0 

Alternatively, using equation (A6), equation (A5) can be written as 

which is valid for spherically symmetric systems. Results other than equations (A5) and 
(A9) are, however, not restricted to spherical enclosures alone and can be extended to 
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arbitrary surfaces provided the deformation considered is isotropic and can therefore 
be characterised by one single scaling parameter. 
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